2020 - 2021 10/09/2020

8a avenue Maistriau 7000 Mons

www.heh.be

Intitulé de l'UE	Mise à niveau en mathématiques
Section(s)	 - (3 ECTS) Master en Sciences de l'Ingénieur industriel Finalité Informatique / Cycle 2 Bloc complémentaire - (3 ECTS) Master en Sciences de l'Ingénieur industriel orientation Life data technologies / Cycle 2 Bloc Complémentaire

Responsable(s)	Heures	Période
Fabrice HUBERT	30	Quad 1

Activités d'apprentissage	Heures	Enseignant(s)
Mathématiques appliquées à l'informatique	30h	Fabrice HUBERT

Prérequis	Corequis

Répartition des heures

Mathématiques appliquées à l'informatique : 10h de théorie, 20h d'exercices/laboratoires

Langue d'enseignement

Mathématiques appliquées à l'informatique : Français

Connaissances et compétences préalables

Bases mathématiques du Bachelier Professionnalisant

Bases de Théorie des Circuits

Objectifs par rapport au référentiel de compétences ARES

Cette UE contribue au développement des compétences suivantes

- Master en sciences de l'ingénieur industriel en Life Data Technologies :
- Master en Sciences de l'ingénieur industriel :
 - Identifier, conceptualiser et résoudre des problèmes complexes
 - Intégrer les savoirs scientifiques et technologiques afin de faire face à la diversité et à la complexité des problèmes reproptrés
 - Modéliser, calculer et dimensionner des systèmes
 - o Sélectionner et exploiter les logiciels et outils conceptuels les plus appropriés pour résoudre une tâche spécifique
- Master en Sciences de l'ingénieur industriel en Informatique :
 - Analyser, concevoir, implémenter et maintenir des systèmes informatiques logiciels et matériels

· Maîtriser et mettre en oeuvre les techniques de traitement de signal (notamment pour le traitement d'images).

Acquis d'apprentissage spécifiques

Maîtrise des outils mathématiques transformationnels utiles au traitement du signal, à l'automatique

des systèmes linéaires et à l'étude des machines et des réseaux électriques.

Contenu de l'AA Mathématiques appliquées à l'informatique

- Transformation cissoïdale, théorie et applications des phaseurs, outils mathématiques pour le cours de Réseaux et Machines Electriques du programme de Master 0,
- Transformation de Laplace et calcul opérationnel, outils mathématiques pour le cours d'Automatique des Systèmes linéaires du programme de Master 0,
- Transformation de Fourier et analyse spectrale, outils mathématiques pour les cours de Traitement du signal 2 et 3 du programme de Master 0 et 1.

Méthodes d'enseignement

Mathématiques appliquées à l'informatique : cours magistral, approche interactive, approche par situation problème

Supports

Mathématiques appliquées à l'informatique : notes de cours

Ressources bibliographiques de l'AA Mathématiques appliquées à l'informatique

Engineering Mathematics: a modern foundation for electronics, electrical and systems engineers

Anthony CROFT, Robert DAVISON, Martin HARGREAVES de Montfort UNIVERSITY UK

ADDISON - WESLEY Publishing Company

Évaluations et pondérations		
Évaluation	Note globale à l'UE	
Langue(s) d'évaluation	Français	
Méthode d'évaluation	Tests dispensatoires	
	Examen de fin de quadrimestre	
Report de note d'une année à l'autre pour l'AA réussie en cas d'échec à l'UE		
Mathématiques appliquées à l'informatique : non		

Année académique : 2020 - 2021