2020 - 2021 12/09/2020

8a avenue Maistriau 7000 Mons

www.heh.be

Intitulé de l'UE	Systèmes automatisés de production	
Section(s)	- (4 ECTS) Master en sciences de l'Ingénieur industriel / Finalité Informatique / Cycle 2 Bloc 2 option Automation et Systèmes embarqués	

Responsable(s)	Heures	Période
Fabrice SCOPEL	60	Quad 1

Activités d'apprentissage	Heures	Enseignant(s)
Projet en systèmes automatisés de production	35h	Fabrice SCOPEL
Systèmes et réseaux d'automatisation industrielle	25h	Fabrice SCOPEL

Prérequis	Corequis
- Automation industrielle	- Instrumentation et régulation

Répartition des heures

Projet en systèmes automatisés de production : 35h de travaux

Systèmes et réseaux d'automatisation industrielle : 25h d'exercices/laboratoires

Langue d'enseignement

Projet en systèmes automatisés de production : Français

Systèmes et réseaux d'automatisation industrielle : Français

Connaissances et compétences préalables

Se référer au prérequis et au corequis.

Objectifs par rapport au référentiel de compétences ARES

Cette UE contribue au développement des compétences suivantes

- Master en Sciences de l'ingénieur industriel :
 - Identifier, conceptualiser et résoudre des problèmes complexes
 - Intégrer les savoirs scientifiques et technologiques afin de faire face à la diversité et à la complexité des problèmes rencontrés
 - o Concevoir, développer et améliorer des produits, processus et systèmes techniques
 - o Sélectionner et exploiter les logiciels et outils conceptuels les plus appropriés pour résoudre une tâche spécifique
 - Établir ou concevoir un protocole de tests, de contrôles et de mesures.
 - Concevoir et gérer des projets de recherche appliquée
 - Réunir les informations nécessaires au développement de projets de recherche
 - Réaliser des simulations, modéliser des phénomènes afin d'approfondir les études et la recherche sur des sujets technologiques ou scientifiques

- S'intégrer et contribuer au développement de son milieu professionnel
 - o Planifier le travail en respectant les délais et contraintes du secteur professionnel (sécurité ...)
- S'engager dans une démarche de développement professionnel
 - o Assumer la responsabilité de ses décisions et de ses choix

- Master en Sciences de l'ingénieur industriel en Informatique :

- · Analyser, concevoir, implémenter et maintenir des systèmes informatiques logiciels et matériels
 - · Concevoir et développer des systèmes informatiques de contrôle et de supervision pour dispositifs industriels.

Acquis d'apprentissage spécifiques

- Concevoir un réseau d'automates programmables industriels (IO Controller & IO Devices) et de pupitres opérateurs.
- Réaliser une programmation avancée sur un réseau de PLC et HMI.

Contenu de l'AA Projet en systèmes automatisés de production

- Programmation avancée sur PLC, périphérie décentralisée et HMI.
- Mise en réseaux de systèmes d'automatisation et de commande (pilotage industriel).

Contenu de l'AA Systèmes et réseaux d'automatisation industrielle

- Effectuer la recherche algorithmique d'une solution optimale.
- Mettre en place un réseau industriel adapté connectant automate, périphérie décentralisée et terminal.
- Programmer l'automate, la périphérie décentralisée (PLC et IO Controller / Device) et le terminal (HMI).
- Procéder à la mise en oeuvre complète d'une installation automatisée sur matériel de simulation et de laboratoire (banc didactique).

Méthodes d'enseignement

Projet en systèmes automatisés de production : travaux de groupes, approche par projets, approche par situation problème, utilisation de logiciels, Travail en autonomie (distanciel)

Systèmes et réseaux d'automatisation industrielle : cours magistral, travaux de groupes, approche par projets, approche interactive, approche par situation problème, utilisation de logiciels, Travail en autonomie (distanciel)

Supports

Projet en systèmes automatisés de production : copies des présentations, syllabus, notes de cours, protocoles de laboratoires, activités sur eCampus

Systèmes et réseaux d'automatisation industrielle : copies des présentations, syllabus, notes de cours, protocoles de laboratoires, activités sur eCampus

Ressources bibliographiques de l'AA Projet en systèmes automatisés de production

- Concepts théoriques: Programmation & mise en réseau d'une solution automatisée complète, SCOPEL F. notes de cours, HeH-Campus Technique, 2020.
- Applications: Travaux dirigés & Travaux pratiques, SCOPEL F. notes de cours, HeH-Campus Technique, 2020.
- BERGER, H., Automating with STEP 7 in LAD and FBD: SIMATIC S7-300/400 Programmable Controllers 5nd edition, Wiley VCH, 2012.
- BERGER, H., Automating with SIMATIC: Integrated Automation with SIMATIC S7-300/400: Controllers, Software, Programming, Data Communication, Operator Control and Process Monitoring - second edition, Wiley VCH, 2004.
- BERGER, H., Automating with SIMATIC S7-1200 second edition, Publicis MCD Werbeagentur GmbH, 2013.
- Siemens Sitrain: Tests en ligne, https://www.sitrain-learning.siemens.com/FR/fr/rw78288/Tests-de-prérequis-en-ligne consulté le 01 septembre 2020.
- Schneider Electric Education : Cahiers techniques & shémathèque

En ligne http://www.schneider-electric.be/sites/belgium/fr/support/publication/publication-introduction.page consulté le 01 septembre 2020.

Ressources bibliographiques de l'AA Systèmes et réseaux d'automatisation industrielle

- Concepts théoriques : Programmation & mise en réseau d'une solution automatisée complète, SCOPEL F. notes de cours, HeH-Campus Technique, 2020.
- Applications: Travaux dirigés & Travaux pratiques, SCOPEL F. notes de cours, HeH-Campus Technique, 2020.
- BERGER, H., Automating with STEP 7 in LAD and FBD: SIMATIC S7-300/400 Programmable Controllers 5nd edition, Wiley VCH, 2012.
- BERGER, H., Automating with SIMATIC: Integrated Automation with SIMATIC S7-300/400: Controllers, Software, Programming, Data Communication, Operator Control and Process Monitoring second edition, Wiley VCH, 2004.
- BERGER, H., Automating with SIMATIC S7-1200 second edition, Publicis MCD Werbeagentur GmbH, 2013.
- Siemens Sitrain: Tests en ligne, https://www.sitrain-learning.siemens.com/FR/fr/rw78288/Tests-de-prérequis-en-ligne consulté le 01 septembre 2020.
- Schneider Electric Education: Cahiers techniques & shémathèque
 En ligne http://www.schneider-electric.be/sites/belgium/fr/support/publication/publication-introduction.page
 consulté le 01 septembre 2020.

Évaluations et pondérations		
Évaluation	Note globale à l'UE	
Langue(s) d'évaluation	Français	
Méthode d'évaluation	 AA: Systèmes et réseaux d'automatisation industrielle : 20% > Évaluation continue ; non remédiable en 2ème session. AA: Projet en systèmes automatisés de production : 80%. > Examen oral / PC : Défense du projet de fin d'année. 	

Report de note d'une année à l'autre pour l'AA réussie en cas d'échec à l'UE

Projet en systèmes automatisés de production : **non** Systèmes et réseaux d'automatisation industrielle : **non**

Année académique : 2020 - 2021