

8a avenue Maistriau 7000 Mons

www.heh.be

04/09/2020

Intitulé de l'UE	Systèmes temps réel et parallélisme
Section(s)	 - (4 ECTS) Master en Sciences de l'Ingénieur industriel Finalité Informatique / Cycle 2 Bloc complémentaire - (4 ECTS) Master en Sciences de l'Ingénieur industriel / Finalité Informatique / Cycle 2 Bloc 1 option Automation et Systèmes embarqués - (4 ECTS) Master en Sciences de l'Ingénieur industriel / Finalité Informatique / Cycle 2 Bloc 1 option Réseaux et Sécurité - (4 ECTS) Master en Sciences de l'Ingénieur industriel / Finalité Informatique / Cycle 2 Bloc 1 option Gestion

Responsable(s)	Heures	Période
Samuel CREMER	40	Quad 2

Activités d'apprentissage	Heures	Enseignant(s)
High performance computing	10h	Samuel CREMER
Multithreading and general-purpose computing on GPU	20h	Samuel CREMER
Systèmes temps réel	10h	Samuel CREMER

Prérequis	Corequis
- Techniques de programmation avancée 2	- Langue 1 - Systèmes d'exploitation

Répartition des heures	
High performance computing : 10h de théorie	
Multithreading and general-purpose computing on GPU: 4h de théorie, 16h d'exercices/laboratoires	
Systèmes temps réel : 10h de théorie	

Langue d'enseignement	
High performance computing: Français, Anglais	
Multithreading and general-purpose computing on GPU : Anglais	
Systèmes temps réel : Français, Anglais	

Connaissances et compétences préalables

- Principes de fonctionnement d'un ordinateur.
- Principes de fonctionnement d'un système d'exploitation.
- Langage de programmation C

Objectifs par rapport au référentiel de compétences ARES

Cette UE contribue au développement des compétences suivantes

- Master en Sciences de l'ingénieur industriel :

- Identifier, conceptualiser et résoudre des problèmes complexes
 - Intégrer les savoirs scientifiques et technologiques afin de faire face à la diversité et à la complexité des problèmes rencontrés
 - · Analyser des produits, processus et performances, de systèmes techniques nouveaux et innovants
 - o Concevoir, développer et améliorer des produits, processus et systèmes techniques
 - o Établir ou concevoir un protocole de tests, de contrôles et de mesures.
- Concevoir et gérer des projets de recherche appliquée
 - o Mener des études expérimentales, en évaluer les résultats et en tirer des conclusions
 - o Valider les performances et certifier les résultats en fonction des objectifs attendus
- S'intégrer et contribuer au développement de son milieu professionnel
 - Évaluer les coûts et la rentabilité de son projet
- S'engager dans une démarche de développement professionnel
 - Réaliser une veille technologique dans sa sphère d'expertise
 - · Actualiser ses connaissances et s'engager dans les formations complémentaires adéquates

- Master en Sciences de l'ingénieur industriel en Informatique :

- · Analyser, concevoir, implémenter et maintenir des systèmes informatiques logiciels et matériels
 - Concevoir et mettre en oeuvre une architecture applicative (client-serveur, orientée services, solution Web, mobile,
 ...) en intégrant le génie logiciel et l'algorithmique.
 - · Maîtriser et mettre en oeuvre les techniques de traitement de signal (notamment pour le traitement d'images).
 - Développer des systèmes embarqués (Internet des objets, ...) en intégrant les composants matériels et logiciels appropriés.

Acquis d'apprentissage spécifiques

- Appréhender et comprendre les enjeux des systèmes temps réel
- Savoir choisir un degré de parallélisme adapté au problème à traiter et en adéquation avec les caractéristiques du matériel utilisé
- Se familiariser avec le HPC et les différents niveaux de parallélismes des architectures
- Savoir programmer des systèmes en exploitant le multithreading et les GPU

Contenu de l'AA High performance computing

- Classification du parallélisme
- Évolution du parallélisme
- Systèmes hétérogènes
- High Performance Computing

Contenu de l'AA Multithreading and general-purpose computing on GPU

Introduction théorique (en anglais) :

- Le parallélisme
- Les graphes de dépendance
- Multithreading
- General-purpose Computing on GPU avec CUDA

Laboratoires (en anglais):

- Rappel des notions de pointeurs et des allocations dynamiques
- Parallélisation naïve d'un algorithme séquentiel
- Parallélisation du même algorithme en tenant compte des spécificités du matériel utilisé
- Introduction à la programmation sur GPU avec CUDA

Contenu de l'AA Systèmes temps réel

- Présentation du temps réel et applications.
- Maîtrise du temps.

- Systèmes temps réel
- Exécutifs temps réel

Méthodes d'enseignement

High performance computing: cours magistral, approche interactive, approche avec TIC, étude de cas, utilisation de logiciels

Multithreading and general-purpose computing on GPU: cours magistral, approche interactive, approche par situation problème, approche avec TIC, étude de cas, utilisation de logiciels

Systèmes temps réel : cours magistral, approche avec TIC, étude de cas

Supports

High performance computing : copies des présentations, syllabus

Multithreading and general-purpose computing on GPU: copies des présentations, syllabus

Systèmes temps réel : copies des présentations, syllabus

Ressources bibliographiques de l'AA High performance computing

- High performance computing, M. Loudikes, C. Severance et K. Dowd, O'Reilly, 1998
- Distributed Computing: fundamentals, simulations, and advanced topics, H. Attiya, Wiley-Blackwell, 2004

Ressources bibliographiques de l'AA Multithreading and general-purpose computing on GPU

- « Algorithmique parallèle. » Arnaud Legrand et Yves Robert. (Dunod, 2003)
- « Initiation au parallélisme. » Gengler, Ubéda et Desprez (Masson 1996)
- "Professional CUDA C Programming", John Cheng, Max Grossman, Ty McKercher (Wrox 2014)
- "Programmin with POSIX Threads", David R. Butenhof (Addison-Wesley Professional 2005

Ressources bibliographiques de l'AA Systèmes temps réel

- « Introduction aux systèmes temps réel. » Christian Bonnet et Isabelle Demeure. (Hermès, 2003)
- « Ordonnancement temps réel.» Cottet, Delacroix, Kaiser et Mammeri. (Hermès, 2000)

Évaluations et pondérations	
Évaluation	Note globale à l'UE
Langue(s) d'évaluation	Français, Anglais
Méthode d'évaluation	Pour cette UE il n'y a pas de notes aux AA. La note finale de l'UE sera calculée sur base de :
	 85% Un examen combinant les 3 AA (en français) 15% Un rapport de laboratoire à remettre (en anglais et non remédiable en seconde session)
	L'eupreuve examinatoire étant intégrée entre les 3 AA, aucune dispence partielle de l'UE n'est possible.

Report de note d'une année à l'autre pour l'AA réussie en cas d'échec à l'UE

High performance computing: non

Multithreading and general-purpose computing on GPU: non

Systèmes temps réel : non

Année académique : 2020 - 2021